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The Effect of Fringing Fields on the
Resistance of a Conducting Film

.

STEPHEN M. SCHWARZBEK AND STEVEN T. RUGGIERO

Abstract — We have calculated the effect of fringing fields on the

measured resistance of a conducting film between two circular disks, using

two complementary approaches, for a wide range of disk separations. The

problem is cast as the numericaf solution of a duaf integraf equatiou and a

straightforward relaxation procedure for the isomorphic problem of the

fringing effects on the capacitance of a circular disk between two grounded

planes. These results afso represent the solution for the capacitance in the

high dielectric limit for two disks separated by a dielectric medium.

I. INTRODUCTION

I N ORDER TO measure the resistivity of a thin film in

its perpendicular direction, the effects of field spreading

on the measurement of resistance must be taken into

account. An elementary calculation of resistance from the

resistivity ignores the effect of these fringing fields, which

lower the resistance in qualitatively the same way as add-

ing external resistors in parallel with the sample. In this

work, we calculate these geometrically induced corrections

by solving the isomorphic problem of the capacitance of a

circular disk placed between two parallel grounded planes.

For an infinite, homogeneous, ohmic medium, the prob-

lems are connected through the elementary relation

RC=c/ti (1)

where c is the dielectric constant of the material and u is

the conductivity, and R and C are the resistance and the

capacitance, defined as usual. We use two methods to

determine the capacitance of a disk of radius one and a

normalized separation I( ( = d/2a, the radius a having

been set to one. See inset of Fig. 1), first simply solving

LaPlace’s equation for the potential at discrete points by

relaxation (mean value theorem), and by solving the dual

integration equation for this geometry numerically. The

LaPlace equation’s applicability is seen if we consider the

continuity equation

V J= dp/dt (2)

noting that for steady-state conduction dp/dt = O, and

using J = oE, then

OV. E=O (3)

and so, since v X E = O meaning E = – V 0, @ some
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potential

v2@=o (4)

which is simply Laplace’s equation.

The two approaches are complementary in the sense that

the systematic errors in the two methods increase for

different limits of K. Fortuitously, there is also an adequate

region of overlap between the results of these methods.

These results, in the appropriate limiting cases, are com-

pared to an asymptotic expansion for this problem devel-

oped elsewhere [1], and to the results of H. A. Wheeler 12].

II. METHODS

A. Method I: The Integral Equation

Sneddon [3] has shown that the solution for the poten-

tial of this geometry (see inset Fig. 1) can be given as

mu-l sinh(tc -lzl)uA(u)JO(pu)du
v(p, z)=~ (5)

cosh KU

where p is the radial coordinate, z is the vertical coordi-

nate, and q, the angular coordinate, is ignorable because

of the circular symmetry of the problem. A(u) must then

satisfy the dual integral equations

J

m
u-ltanh(Ku)A(u) JO(pu)du=f(p), O<p<l

o

(6a)

and

fk4Jo(P4du=o P>l (~b)
o

In these equations, .lO(pu) is the usual first-order Bessel

function of the first kind and ~(p) describes the potential

(see [3]) on the disk, which in this case will be taken to be a

constant and set to one. Furthermore, if we set

A(u) =uj+l(t)cos(ut)dt (7)
o

then the integral equations are satisfied if

@(t) =h(t)+j@)Q(t, ~)d~ (8)
o

where
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Fig. 1. The measured resistance between two disks separated by a

conducting medium, normalized to the resistance without field spread-
ing. (RO =pd/a2m, p is the resistivity.) The plate separation, K,=

d/2a; the geometry is pictured in the inset, The circles are points
directly calculated bysolving theintegral equation (eq. (8)) in the text,

as described by Sneddon [3], numencafly; the squares and triangles are
points cafcuated by a relaxation procedure, as implemented in two
separate programs. The first program, a 23x1OO cell relaxation, covers

the range of 0.3 <K< 2, anditsresults arethesquaes. The second uses

a 21 x200 matrix, and calculates resufts for 0.01< K <0.3 (these are the

triangles). The dashed lined is an approximation for the resistance at
large separations. A third-order polynomial fit was developed to de-

scribe the data represented here by the circles, for the particular region

~ =1. It is plotted as the solid line, and shows good agreement with the

results for ~ <1, and is superseded by the large K asymptotic expression

for K >2.

and

Q(t, ~) = ~~w(l–tanh Kzf)cosutcosurdu. (lo)

It can be shown, as for the similar problem of two free

disks [3], by taking ‘the limit of the potential as ~ -+ cc that

the capacitance normalized to the value CO= l/(4 K), is

given by

C/CO( = RO/R) = 2K (%(t) dt. (11)
Jo

On implementation, a 10X 10 or a 64X 64 transform

matrix Q( n, m) was set up by integrating (10) for values of

t and ~ ascribed to the discrete variables n and m, using a

simple trapezoidal rule. @(n ), the discrete analog of @(t),

is then iterated as a whole until it satisfies (that is, each

point is within 10-G of its value in the previous iteration)

~(rr–~=~ f @(m) Q(n, m) (12)
~=1

where N is the total number of discrete elements n, the

discretization of t,assigned to @(t),and m is a discretiza-

tion of ~. This expression is structurally equivalent to (8).

B. Method II: Relaxation

A relatively straightforward method for determining the

capacitance of this system, especially as K >0, is to solve

for the potential in a relaxation scheme solving Laplace’s

equation. Our method follows that of Bartlett and Corle

[4], who used this to compare the potential on the plate to

the values found by Love [5], Nomura [6], and Cooke [7]

for the problem of two free plates. Our problem is rela-

tively more simple, as the boundaries imposed by model

considerations are more representative of the boundary

conditions of this problem than of theirs. In contrast to

their work, which focused on determining the field at each

point, we will instead be considering the capacitance of

this system, using the result that [8]

C=l/4r~lV@12dV (13)

that is, that the capacitance of a disk at unit potential in a

grounded box is just the integral over the volume of the

gradient squared. Without spreading this reduces to the

elementary result CO= ma2/4wd.

In cylindrical coordinates, the problem reduces to a

relaxation in two dimensions (q becomes redundant), with

the averaging function modified to average rings at (p, z),

giving proportional weight to rings at larger radii. Bartlett

and Corle [4] have shown that the algorithm for generating

the appropriate potential is

V(i, j)=l/4{F’(i, j-l)+ F’(i, j+l)

+1/2[V(i –l, j)+ V(i+l, j)

+l/i((i +l)V(i+l, j)+(i-l)V(i -l, j))]} (14)

where V( i, j) is the potential at (i, j), and r is the radius

cx i. While this is described as approximating LaPlace’s

equation to third order, a more rudimentary explanation is

that the “ volume” of the cell at a radius i is roughly

related to its neighbors as [(i+ 1)2 – i2], [(i2 – (i – 1)2],

and their average, representing the volume at i +1, i – 1,

and at i, respectively. This leads to

V(i, j) =1/8i[2iV(i, j–l)+2iV(i, j+l)

+(2i+l)V(i +1, j)+(2i– l) V(i–l, j)]. (15)

Some simple algebraic manipulation then reproduces their

result.

For example, in the K -1 case (Section III-C), we used a

23x 100 cell matrix F’(i, j), “grounding” rows 1 and 23
and putting the “disk,” of unit potential and length a, at

row 12. We simultaneously iterated, using a separate ma-

trix to store the new values, J’( i, j) until the values no

longer change (the change in any value from one iteration

to the next being less than 10 – 7, the numerical resolution

of this single-precision procedure). The first column was

held at values corresponding to a constant gradient, as

suggested by the symmetry of the problem. The last col-

umn was also held at zero potential; this will introduce

errors in the values corresponding to smallest ~, but which

are weeded out by checking the penultimate column (the
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TABLE I
THE NORMALIZED CAPACITANCEVALUES FROMRELAXATION
VERSUSKIRCHOFF’SAPPROXIMATION,FORTwo FREEDISKS

K C/q(a) c,/cJb) A (%)(’)

0.250 1.595 1.575 + 1.27

0.182

0.143

0.118

0.111
0.100

0.087
0.067
0.056
0.047

1.452

1.375

1.328

1.319
1.296

1.272
1.195
1.175
1.164

1.455

1.380

1.327
1.313
1.288

1.258
1.209
1.181
1.166

– 0.21

– 0.36

+ 0.08
+ 0.47
+ 0.62
+ 1.11
– 1.15

-0.51
-0.17

This serves as a check upon the relaxation method. ~ is the
normalized separation, d/2 a from the inset of Fig. 1.

(a)Values directly calculated.
(b)Values from the Kirchoff approximation (eq. (16) in the

)text
(= Percentage difference of the direct values from the ap-

proximation.

column next to the wall) for potentials greater than 0.001.

This implies that the field spreading is sufficiently con-

tained within the sample space for our desired l-percent

accuracy. Another consideration is the finite thickness of

the plate. The capacitance will be driven down relative to

the zero-thickness results for larger values of IC. In our

studies at this level of accuracy, we find by simply doing

this problem with various sizes of spaces that this effect is

negligible ( <1 percent) for K <0.3. In this same manner,

we find that corrections to our basic cell size are even less

significant than this for cell sizes in this range.

As a check on this method for determining capacitance,

we introduced two plates of opposite voltage in a space of

25X 100 cells. The results we have obtained are compared

to the Kirchoff approximation

(16)

which is an expansion in the limit of small plate separation

for the capacitance of two free plates [1] for this related

geometry. The results from our program for values of the

separation where this method should be accurate (i.e., K in

the range 0.05< K < 0.2) for this size of space are listed in

Table I. We have reasonably good agreement in this range,

especially considering the over-simplified boundary condi-

tions we imposed on this particular problem. Comparison

to the more accurate results of other papers on this geome-

try by Chew and Kong [9], [10] enhance this agreement

somewhat, but a much more careful implementation of

this particular program would be needed to improve upon

their results. This should serve to affirm the accuracy of

this method for the more carefully implemented method

for our original problem.

III. RESULTS

A. Large Separation: K>> 1

For large values of K, we appeal to the integral equations

of the two methods outlined above, noting in this case that

O(t) is very nearly constant, as the planes are far from the

TABLE II
NORMALIZED VALUES OF RESISTANCE R/R. OBTAINED THROUGH

SOLVING THE INTEGRALEQUATION (5) AND (8)
=

direct calculations fits to data

K R/R#~ R/R&b) R/R#) R/R&d~

9.0 0.0830 0.0830 0.0830 —

6.0 0.1213 0.1213 0.1213 —

4.5 0.1576 0.1576 0.1574 0.1610
3.0 0.2241 0.2242 0.2233 0.2247
2.0 0.3097 0.3103 0.3061 0.3111
1.0 0.4861 0.4916 0.4388 0.4916
0.667 0.5831 0.6000 — 0.5992
0.500 0.6464 — — 0.6698
0.333 0.6702 0.7502 — 0.7559

~ is the normalized separation. See inset, Fig. L
(a)From a lo.place iIpprOXhIIdiOII @ @(t) (see ‘ext ‘rider

‘$k%% a 64-place approximation to O(i) (see text under Method I).
(c)Calculated from the hge K lid expression

7TK–21n2

4K2
(see eq. (19)).

‘d) Calculated from the polynomial fit (1+ .931K + .118K2 – .015K3)-1

(see eq. (20)).

disk. As K ~ co, (10) becomes

J(w l–tanh Ku)(l+0(u2)) du= ln2/K. (1’7)
o

Since 1 – tanh ax goes to zero quickly if a>> 1, u re-

mains very small over the range where the integrand has

an appreciable value, and since t and ~ are bounded above

by 1.0, we can then replace cos ut and cos UT by COS(0) =

1.0, leaving terms of order u 2. Therefore, in this limit,

Q(t, ~) is ln2/K for all t and ~, and (12) is

in 2
;@=@—+l (18)

K

which leads to

~,Ro = (TK-21n2)

4K2
as fc -co

(note: lto~oo as K~co) (19)

this represents the large K limit of R/Ro, and is plotted as

the dashed line in Fig. 1. Some representative values are

given in the fourth column of Table II.

B. small Separation: K<< ~

Based on the previously described relaxation method,

another program along these same lines was developed

which used a plate “voltage” of 10 and ended up averag-

ing over cells of rectangular rather than square “cross

section.” This 21 X200 program mimicked a much larger

space in this way by making the apparent distance between

the disk and the planes 2 rather than 10, and so extending

this method well into the range where small K expansions

are valid. These values of R/R ~ are listed in Table III,

second column, and are the triangles in Fig. 1.

C. Unit Separation: K -1

For K ~ O, as noted by Chew and Kong [1], Q(rz, m) of

Method I becomes a diagonal matrix, but for this region,
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TABLE III

VALUES OBTAINED FROM THE RELAXATION METHOD,
AS ADAPTED FOR SMALL K (SEE TEXT)

direct comparisons

K R/R ~~ R /Ro(b) R/Ro(c)

0.200 0.8320 0.8389 0.8429

0.100 0.9104 0.9133 0.9162

0.067 0.9382 0.9413 0.9429

0.050 0.9531 0.9550 0.9566

0.040 0.9623 0.9637 0.9651

0.033 0.9684 0.9699 0.9711

0.029 0.9729 0.9736 0.9745

0.025 0.9762 0.9772 0.9779

0.022 0.9788 0.9799 0.9806

0.020 0.9809 0.9816 0.9823

0.018 0.9826 0.9833 0.9841

0.015 0.9852 0.9858 0.9867

0.013 0.9872 0.9878 0.9884

0.012 0.9887 0.9889 0.9893

The polynomial is taken from Chew and Kong [1] and
tabulated here for comparison to these values in this

‘e~~alues directly calculated by relaxation, with the
modifications described in the section on IC<1, allowing
determination of the resistance for these vafues of ~.

(b) Calculated from the polynomial fit to the data of
Table II, (1+ 0.931K + 0.118K2 – 0.015 K3)- 1 (see eq. (20)).

(c)Calculated from the polynomial derived from the

results of Chew and Kong [1], (1+ O.898K + 0.171K2 )–1
(see eq. (23)).

IC-1, the off-diagonal elements can become very im-

portant. In consideration of this, we note that Q(t, ~) is

always nonnegative, and tends to zero as K + O for t# T.

Also, the average of each row or column in Q(i, j), or the

integral on either t or ~ in Q( t,T)must be less than n/2,

or a solution of (8) will not exist. The limitations of this

method, for K <1, stem from the need to divide @(t) into

many places (N must be large) so that this condition on

the average element in any row of @(n) is met. Our crude

integration scheme tends to overestimate Q(i, j), and for

N too small will lead to vast overestimates of C/CO

(underestimating R/R O). Hence, we did not use the in-

tegral equation to generate results for Section III-B. For

our purposes, we have found that, by using N = 64, we

have sufficient agreement between the two methods used

(the intrinsic numerical errors tend to increase for oppos-

ing limits of K, in comparing the integral method to

relaxation) to have confidence in our calculations to the

l-percent level. Data obtained from this method for R/RO

is given in Table I, and their inverses R/R ~ are plotted as

circles in Fig. 1. This method becomes impractical for
K < 1/3 due to excessively slow convergence.

Using the relaxation procedure discussed in Section II,

we calculated the resistance of this system for the range of

separation 0.28< K <2.0. The numbers obtained in this

manner are presented in Table IV (second column), and

are represented as squares in Fig. 1.

IV. COMPARISONS OF RESULTS

In order to compare our results calculated for separation

K -1 to those obtained for small plate separation [1], we fit

our capacitance results to a polynomial in the plate sep-

aration. A third-order chi-squares fit to the results (for the

TABLE IV

VALUES OF R /R. FROM RELAXATION METHOD

K R/R ~(a) R/Ro(b)

2.0 0.3482 0.3111
1.67 0.3920 0.3559
1.25 0.4640 0.4312
1.00 0.5211 0.4916
0.667 0.6250 0.5992

0.500 0.6901 0.6698
0.455 0.7107 0.6916

0.400 0.7369 0.7194

0.345 0.7657 0.7491

0.333 0.7722 0.7559

0.303 0,7886 0.7734
0.286 0.7988 0.7837

(a)Direct calculations from the rekmation prO-

cedure described under Method II in the text.
(b) Calculated from the polynomial fit to the

data listed in Table II (see eq. (20)).

range 1/3 < K < 3) generated by the N = 64 place program

gave the polynomial

C/CO =1 +0.931K +0.118K2 –0.015K3 (20)

which we will use to compare to other results. Its inverse,

being the normalized resistance R /RO, is the solid line in

Fig. 1, with some values tabulated in column 5 of Table II

and column 3 of Tables III and IV.

Chew and Kong [1] (here as CK) solved the equation for

~(t) (as in Section I) in the limit of K<< 1 where the

function Q(t, r) is diagonal and where the equations sim-

plify, to obtain an expansion for the capacitance of two

disks separated by a moderate dielectric. Their full expres-

sion, which involves two circular disks in free space (or a

host medium) separated by a dielectric medium, is in our

notation (see inset, Fig. 1 for geometry)

+ ~(0.268~1 +1.65)
}}

(21)

where c~ is the host dielectric constant and c1 is the

dielectric constant of the medium separating the plates.

This becomes, normalized to CO= a2r/4md, for c1 -+ co

(22)

=1 +0.898K +0.171K2. (23)

These values of C/CO are also listed in Table II(b). These

results do not differ greatly from those obtained by the

third-order fit developed from points taken from the solu-

tion of this problem for an entirely different set of plate

separations. For the range claimed accurate by CK (K <

1/2), these values differ by at most 2 percent. (Some

values are given for comparison in column 4 of Table 111).

The usefulness of the third-order fit, in contrast to this

second-order expression, is to accurately describe the

capacitance in the range K -1, where the extra term en-
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ables us to then switch over to the expression for ~>>1 [2]

(eq. (16)) at approximately IC=3 while remaining within

-1 percent of thevalues directly calculated. In the graph [31

of R/R. (-Co/C, Fig. 1) the line for (23) would be

indistinguishable from’ the fit (eq. (17)) for IC<O.2 and [4]

diverge only slightly (on the low side of the calculated

resistance) after that. Over the rest of the range of sep- [5]

arations, we compare to the results of Wheeler [2], who

analytically interpolated the asymptotic expressions for the [6]
large and small separation limits. There is excellent agree-

ment everywhere except for the range 0.02< ~ <0.4, where

this expression
[7]
[8]

8K+277

Zm {1-(4 +1.3k-1+5.81C-1} (24) ‘9]

over-estimates the actual resistance by more than 1 per- [1o]

cent.

V. CONCLUSIONS

We have determined the resistance between two circular,

coaxial disks on ormosin~ sides of a thin slab of conduct-

ing medium in t~~ pre~ence of fringing fields for disk

separations of 0.01 to 10.0 times the disk diameter. We

used two complementary procedures to solve the equivalent

problem of the capacitance of a single disk between two

grounded planes: one a straightforward relaxation solving

LaPlace’s equation on a computer grid, another a numeri-

cal solution of the derived integral equation appropriate to

this system. As a check upon our relaxation method, we

also calculated the capacitance of two free disks, and find

very good agreement with the Kirchoff approximation for

a relatively large range of disk sepmation.
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