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The Effect of Fringing Fields on the
Resistance of a Conducting Film

STEPHEN M. SCHWARZBEK anp STEVEN T. RUGGIERO

Abstract —We have calculated the effect of fringing fields on the
measured resistance of a conducting film between two circular disks, using
two complementary approaches, for a wide range of disk separations. The
problem is cast as the numerical solution of a dual integral equation and a
straightforward relaxation procedure for the isomorphic problem of the
fringing effects on the capacitance of a circular disk between two grounded
planes. These results also represent the solution for the capacitance in the
high dielectric limit for two disks separated by a dielectric medium.

I. INTRODUCTION

N ORDER TO measure the resistivity of a thin film in

its perpendicular direction, the effects of field spreading
on the measurement of resistance must be taken into
account. An elementary calculation of resistance from the
resistivity ignores the effect of these fringing fields, which
lower the resistance in qualitatively the same way as add-
ing external resistors in parallel with the sample. In this
work, we calculate these geometrically induced corrections
by solving the isomorphic problem of the capacitance of a
circular disk placed between two parallel grounded planes.
For an infinite, homogeneous, ohmic medium, the prob-
lems are connected through the elementary relation

RC=¢/o (1)

where ¢ is the dielectric constant of the material and o is
the conductivity, and R and C are the resistance and the
capacitance, defined as usual. We use two methods to
determine the capacitance of a disk of radius one and a
normalized separation k (=d/2a, the radius a having
been set to one. See inset of Fig. 1), first simply solving
LaPlace’s equation for the potential at discrete points by
relaxation (mean value theorem), and by solving the dual
integration equation for this geometry numerically. The
LaPlace equation’s applicability is seen if we consider the
continuity equation
v-J=dp/dt (2)
noting that for steady-state conduction dp/dt=0, and
using J = oE, then
oV-E=0

(3)

and so, since V X E =0 meaning E=-v®, ® some
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potential
vio=0

which is simply Laplace’s equation.

The two approaches are complementary in the sense that
the systematic errors in the two methods increase for
different limits of . Fortuitously, there is also an adequate
region of overlap between the results of these methods.
These results, in the appropriate limiting cases, are com-

pared to an asymptotic expansion for this problem devel-
oped elsewhere [1], and to the results of H. A. Wheeler |2].

(4)

II. METHODS

A. Method I: The Integral Equation

Sneddon [3] has shown that the solution for the poten-
tial of this geometry (see inset Fig. 1) can be given as

V(p, 2) =f0°° wtsinh (k — |z ud(u) Jo( pu) du )

coshku
where p is the radial coordinate, z is the vertical coordi-
nate, and ¢, the angular coordinate, is ignorable because
of the circular symmetry of the problem. A(u) must then
satisfy the dual integral equations

/(;wu_ltanh(xu)A(u)Jo(pu) du=f(p), 0=<px<l
(6a)
and
j()wA(u)JO(pu)du=0, p>1. (6b)

In these equations, Jy(pu) is the usual first-order Bessel
function of the first kind and f(p) describes the potential
(see [3]) on the disk, which in this case will be taken to be a
constant and set to one. Furthermore, if we set

A(u)=uj:<l>(t)cos(ut)dt (7)

then the integral equations are satisfied if

‘I)(t)=h(t)+/;1<D(T)Q(t,T)d'r (8)

where

d d
h(r>=§;/0%_”7")=z/w for f(p) =1 (9)
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Fig. 1. The measured resistance between two disks separated by a
conducting medium, normalized to the resistance without field spread-
ing. (Ro=pd/a*n, p is the resistivity.) The plate separation, x, =
d/2a; the geometry is pictured in the inset. The circles are points
directly calculated by solving the integral equation (eq. (8)) in the text,
as described by Sneddon [3], numerically; the squares and triangles are
points calcuated by a relaxation procedure, as implemented in two
separate programs. The first program, a 23 X 100 cell relaxation, covers
the range of 0.3 < k < 2, and its results are the squares. The second uses
a 21 X200 matrix, and calculates results for 0.01 < « < 0.3 (these are the
triangles). The dashed lined is an approximation for the resistance at
large separations. A third-order polynomial fit was developed to de-
scribe the data represented here by the circles, for the particular region
x =1. Tt is plotted as the solid line, and shows good agreement with the
results for k <1, and is superseded by the large « asymptotic expression
for k > 2,

and
2 e
Q(t,7)=—f (1—tanhku)cosutcosurdu. (10)
7 Jo

It can be shown, as for the similar problem of two free
disks [3], by taking the limit of the potential as k —> co that
the capacitance normalized to the value C,=1/(4x), is
given by

C/Cy(=R,/R) =2xf01<1>(t)dt. (11)

On implementation, a 10X10 or a 64X64 transform
matrix Q(n, m) was set up by integrating (10) for values of
¢ and 7 ascribed to the discrete variables n and m, using a
simple trapezoidal rule. ®(n), the discrete analog of ®(r),
is then iterated as a whole until it satisfies (that is, each
point is within 10~ of its value in the previous iteration)

o(n)-Z=3 T o(mo(nm) (1)

where N is the total number of discrete elements », the
discretization of ¢, assigned to ®(r), and m is a discretiza-
tion of 7. This expression is structurally equivalent to (8).
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B. Method II: Relaxation

A relatively straightforward method for determining the
capacitance of this system, especially as x > 0, is to solve
for the potential in a relaxation scheme solving Laplace’s
equation. Our method follows that of Bartlett and Corle
[4], who used this to compare the potential on the plate to
the values found by Love [5], Nomura [6], and Cooke [7]
for the problem of two free plates. Our problem is rela-
tively more simple, as the boundaries imposed by model
considerations are more representative of the boundary
conditions of this problem than of theirs. In contrast to
their work, which focused on determining the field at each
point, we will instead be considering the capacitance of
this system, using the result that [8§]

C=1/47 [[voldv (13)
that is, that the capacitance of a disk at unit potential in a
grounded box is just the integral over the volume of the
gradient squared. Without spreading this reduces to the
elementary result C, = 7a’/47d.

In cylindrical coordinates, the problem reduces to a
relaxation in two dimensions (¢ becomes redundant), with
the averaging function modified to average rings at (p, z),
giving proportional weight to rings at larger radii. Bartlett
and Corle [4] have shown that the algorithm for generating
the appropriate potential is

v(i,j)=1/4{V(i, j 1)+ V(i, j+1)
+1/2[V(i—1, )+ V(i+1, j)

+1/i((+D)V(i+1, )+ -D)V(i-1, )]} (14)

where V(i, j) is the potential at (i, j), and r is the radius
« j. While this is described as approximating LaPlace’s
equation to third order, a more rudimentary explanation is
that the “volume” of the cell at a radius i is roughly
related to its neighbors as [(i +1)2—i?], [(i2—(i —1)?],
and their average, representing the volume at i +1, i —1,
and at i, respectively. This leads to
V(i,j)y=1/8i[2iV(i, j—1)+2iV(i, j+1)
+Qi+D)V(Ei+1, H+Qi-1)V(i-1,)]. (15)
Some simple algebraic manipulation then reproduces their
result.

For example, in the « ~1 case (Section III-C), we used a
23 X100 cell matrix V(i, j), “grounding” rows 1 and 23
and putting the “disk,” of unit potential and length a, at
row 12. We simultaneously iterated, using a separate ma-
trix to store the new values, V(i, j) until the values no
longer change (the change in any value from one iteration
to the next being less than 1077, the numerical resolution
of this single-precision procedure). The first column was
held at values corresponding to a constant gradient, as
suggested by the symmetry of the problem. The last col-
umn was also held at zero potential; this will introduce
errors in the values corresponding to smallest x, but which
are weeded out by checking the penultimate column (the



SCHWARZBEK AND RUGGIERO: EFFECTS OF FRINGING FIELDS

TABLE I
THE NORMALIZED CAPACITANCE VALUES FROM RELAXATION
VERSUS KIRCHOFF’'S APPROXIMATION, FOR TwO FREE DisKs
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TABLE II
NORMALIZED VALUES OF RESISTANCE R /R OBTAINED THROUGH
SOLVING THE INTEGRAL EQUATION (5) AND (8)

K C/C® c/C® A (%)© direct calculations fits to data
0.250 1.595 1.575 +1.27 K R/R,® R/R® R/R© R/RJ®
0182 e e o 90 0.0830 0.0830 0.0830 =
Feeed 308 309 oo 6.0 0.1213 0.1213 0.1213 -
Pt 13 I3 e 45 0.1576 0.1576 0.1574 0.1610
o e e o 3.0 0.2241 0.2242 0.2233 0.2247
e o 158 oo 2.0 0.3097 0.3103 0.3061 03111
o e 1o s 1.0 0.4861 0.4916 0.4388 0.4916
e o et s 0.667 0.5831 0.6000 — 0.5992

~ : : : 0.500 0.6464 — — 0.6698
0.047 1.164 1.166 -0 0333 0.6702 0.7502 — 0.7559

This serves as a check upon the relaxation method. x is the
normalized separation, d /2a from the inset of Fig. 1.
@Values directly calculated.
®Values from the Kirchoff approximation (eq. (16) in the
te)%ct?:Perct:ntage difference of the direct values from the ap-
proximation.
column next to the wall) for potentials greater than 0.001.
This implies that the field spreading is sufficiently con-
tained within the sample space for our desired 1-percent
accuracy. Another consideration is the finite thickness of
the plate. The capacitance will be driven down relative to
the zero-thickness results for larger values of k. In our
studies at this level of accuracy, we find by simply doing
this problem with various sizes of spaces that this effect is
negligible ( <1 percent) for k < 0.3. In this same manner,
we find that corrections to our basic cell size are even less
significant than this for cell sizes in this range.

As a check on this method for determining capacitance,
we introduced two plates of opposite voltage in a space of
25 %100 cells. The results we have obtained are compared
to the Kirchoff approximation

(16)

which is an expansion in the limit of small plate separation
for the capacitance of two free plates [1] for this related
geometry. The results from our program for values of the
separation where this method should be accurate (i.e., k in
the range 0.05 < k < 0.2) for this size of space are listed in
Table 1. We have reasonably good agreement in this range,
especially considering the over-simplified boundary condi-
tions we imposed on this particular problem. Comparison
to the more accurate results of other papers on this geome-
try by Chew and Kong [9], {10] enhance this agreement
somewhat, but a much more careful implementation of
this particular program would be needed to improve upon
their results. This should serve to affirm the accuracy of
this method for the more carefully implemented method
for our original problem.

¢ 1+2 [l 5 1]
CO— .

III. RESULTS

A. Large Separation: k> 1

For large values of «, we appeal to the integral equations
of the two methods outlined above, noting in this case that
® (1) is very nearly constant, as the planes are far from the

« is the normalized separation. See inset, Fig. 1.

@®From a 10-place approximation to ®(¢) (see text under
Method I).

®From a 64-place approximation to @(t) (see text under Method I).

(9 Calculated from the large « limit expression

7k —2In2
T (see eq. (19)).

@ Calculated from the polynomial fit (1+.931« +.118x2 —.015x3)~!
(see eq. (20)).

disk. As k — o0, (10) becomes

f0°°(1 —tanhku)(1+0(u?)) du=In2/k.  (17)

Since 1-—tanhax goes to zero quickly if a>1, u re-
mains very small over the range where the integrand has
an appreciable value, and since ¢ and 7 are bounded above
by 1.0, we can then replace cosut and cosur by cos(0) =
1.0, leaving terms of order u2 Therefore, in this limit,
Q(t,7)is In2 /k for all ¢ and 7, and (12) is

Te—onZ 41 18
27k ( )
which leads to
(mx —21n2)
R/R0=——Zz—‘ as Kk > o0
K

(note: Ry~ o0 as k > o0) (19)

this represents the large « limit of R /R, and is plotted as
the dashed line in Fig. 1. Some representative values are
given in the fourth column of Table II.

B. Small Separation: k <1

Based on the previously described relaxation method,
another program along these same lines was developed
which used a plate “voltage” of 10 and ended up averag-
ing over cells of rectangular rather than square “cross
section.” This 21 X200 program mimicked a much larger
space in this way by making the apparent distance between
the disk and the planes 2 rather than 10, and so extending
this method well into the range where small x expansions
are valid. These values of R/R, are listed in Table III,
second column, and are the triangles in Fig. 1.

C. Unit Separation: k ~1

For k — 0, as noted by Chew and Kong [1], Q(n, m) of
Method T becomes a diagonal matrix, but for this region,
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TABLE III
VALUES OBTAINED FROM THE RELAXATION METHOD,
AS ADAPTED FOR SMALL & (SEE TEXT)

direct comparisons
K R/R,® R/R,® R/R,©
0.200 0.8320 0.8389 0.8429
0.100 0.9104 0.9133 0.9162
0.067 0.9382 0.9413 0.9429
0.050 0.9531 0.9550 0.9566
0.040 0.9623 0.9637 0.9651
0.033 0.9684 0.9699 0.9711
0.029 0.9729 0.9736 0.9745
0.025 0.9762 0.9772 0.9779
0.022 0.9788 0.9799 0.9806
0.020 0.9809 0.9816 0.9823
0.018 0.9826 0.9833 0.9841
0.015 0.9852 0.9858 0.9867
0.013 0.9872 0.9878 0.9884
0.012 0.9887 0.9889 0.9893

The polynomial is taken from Chew and Kong [1] and
tabulated here for comparison to these values in this
regime.

fValues directly calculated by relaxation, with the
modifications described in the section on k <1, allowing
determination of the resistance for these values of «.

® Calculated from the polynomial fit to the data of
Table IT, (1+0.931x +0.118x% — 0.015x3) "1 (see eq. (20)).

©Calculated from the polynomial derived from_the
results of Chew and Kong [I], (1+0.898x +0.171k%)"1

(see eq. (23)).

k ~1, the off-diagonal elements can become very im-
portant. In consideration of this, we note that Q(z,7) is
always nonnegative, and tends to zero as x — 0 for ¢+ 7.
Also, the average of each row or column in Q(i, j), or the
integral on either ¢ or 7 in Q(¢, 7) must be less than #/2,
or a solution of (8) will not exist. The limitations of this
method, for x <1, stem from the need to divide ®(¢) into
many places (N must be large) so that this condition on
the average element in any row of ®(») is met. Our crude
integration scheme tends to overestimate Q(i, j), and for
N too small will lead to vast overestimates of C/C,
(underestimating R /R,). Hence, we did not use the in-
tegral equation to generate results for Section III-B. For
our purposes, we have found that, by using N =64, we
have sufficient agreement between the two methods used
(the intrinsic numerical errors tend to increase for oppos-
ing limits of k, in comparing the integral method to
relaxation) to have confidence in our calculations to the
1-percent level. Data obtained from this method for R /R,
is given in Table I, and their inverses R /R, are plotted as
circles in Fig. 1. This method becomes impractical for
k <1/3 due to excessively slow convergence.

Using the relaxation procedure discussed in Section II,
we calculated the resistance of this system for the range of
separation 0.28 <k <2.0. The numbers obtained in this
manner are presented in Table IV (second column), and
are represented as squares in Fig. 1.

IV. COMPARISONS OF RESULTS

In order to compare our results calculated for separation
k ~1 to those obtained for small plate separation [1}, we fit
our capacitance results to a polynomial in the plate sep-
aration. A third-order chi-squares fit to the results (for the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 9, SEPTEMBER 1986

TABLE IV
VALUES OF R /R, FROM RELAXATION METHOD
3 R/R,® R/R®
2.0 0.3482 03111
1.67 0.3920 0.3559
1.25 0.4640 0.4312
1.00 0.5211 0.4916
0.667 0.6250 0.5992
0.500 0.6901 0.6698
0.455 0.7107 0.6916
0.400 0.7369 0.7194
0.345 0.7657 0.7491
0.333 0.7722 0.7559
0.303 0.7886 0.7734
0.286 0.7988 0.7837

@Direct calculations from the relaxation pro-
cedure described under Method II in the text.

®) Calculated from the polynomial fit to the
data listed in Table II (see eq. (20)).

range 1/3 < « < 3) generated by the N = 64 place program
gave the polynomial

C/Cy=1+0931x +0.118x2 —0.015¢>  (20)

which we will use to compare to other results. Its inverse,
being the normalized resistance R /R, is the solid line in
Fig. 1, with some values tabulated in column 5 of Table II
and column 3 of Tables III and IV.

Chew and Kong [1] (here as CK) solved the equation for
®(¢) (as in Section I) in the limit of ¥ <1 where the
function Q(¢, 7) is diagonal and where the equations sim-
plify, to obtain an expansion for the capacitance of two
disks separated by a moderate dielectric. Their full expres-
sion, which involves two circular disks in free space (or a
host medium) separated by a dielectric medium, is in our
notation (see inset, Fig. 1 for geometry)

2
a‘me€g

C R +(1.41¢, +1.77)
" 4nd wela{{l/{ﬁd}' A

+ Z—(o.zége1 +1.65)}} (21)

where €, is the host dielectric constant and ¢, is the
dielectric constant of the medium separating the plates.
This becomes, normalized to C, = a’*r/4xd, for ¢, — o0

2d a d
lim {1+ {ln~+(1.41+0.268—)51}
€ >0 mE a 2d a
(22)
~1+0.898k +0.171«2. (23)

These values of C/C, are also listed in Table II(b). These
results do not differ greatly from those obtained by the
third-order fit developed from points taken from the solu-
tion of this problem for an entirely different set of plate
separations. For the range claimed accurate by CK (x <
1/2), these values differ by at most 2 percent. (Some
values are given for comparison in column 4 of Table III).
The usefulness of the third-order fit, in contrast to this
second-order expression, is to accurately describe the
capacitance in the range x ~1, where the extra term en-

C/C =
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ables us to then switch over to the expression for x> 1
(eq. (16)) at approximately x =3 while remaining within
~1 percent of the values directly calculated. In the graph
of R/R, (=C,/C, Fig. 1) the line for (23) would be
indistinguishable from' the fit (eq. (17)) for ¥ <0.2 and
diverge only slightly (on the low side of the calculated
resistance) after that. Over the rest of the range of sep-
arations, we compare to the results of Wheeler [2], who
analytically interpolated the asymptotic expressions for the
large and small separation limits. There is excellent agree-
ment everywhere except for the range 0.02 < k < 0.4, where
this expression

8k + 27
29

over-estimates the actual resistance by more than 1 per-
cent.

{1-(4+13k7 1 +5.8¢) "} (24)

V. CONCLUSIONS

We have determined the resistance between two circular,
coaxial disks on opposing sides of a thin slab of conduct-
ing medium in the presence of fringing fields for disk
separations of 0.01 to 10.0 times the disk diameter. We
used two complementary procedures to solve the equivalent
problem of the capacitance of a single disk between two
grounded planes: one a straightforward relaxation solving
LaPlace’s equation on a computer grid, another a numeri-
cal solution of the derived integral equation appropriate to
this system. As a check upon our relaxation method, we
also calculated the capacitance of two free disks, and find
very good agreement with the Kirchoff approximation for
a relatively large range of disk separation.
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